Archive

Archive for the ‘Greentropia’ Category

Reviewing dual-layer PCBWay PCBs

March 11, 2019 Leave a comment

This review is an addendum to the first part in the Greentropia Base Board article series [1]. Here we have a look at the PCB ordering options, process and product delivered by PCBWay and conclude with impressions of the Greentropia Base realized with these PCBs.

Much to the delight of professional hardware developers and hobbyists alike, prices for dual layer FR4 PCBs have come down to a point where shipping from Asia has become the major cost factor. An online price comparison [2] brings up the usual suspects, with new and lesser-known PCB manufacturers added to the mix.

In this competitive environment, reputation is just as important as consistently high quality and great service. Thus PCBWay [3] reached out to us to talk about their PCB manufacturing process and products by providing free PCBs, which we accepted as an opportunity to fast-lane the Greentropia Base board [4], a primary building block of the ongoing Greentropia indoor farming project [5].

Ordering the PCBs

PCB specifications guide the design process and show up again when ordering the actual PCBs. They are at the beginning and the end of the board design process – hopefully without escalation to smaller drill sizes, trace widths and layer count.

The manufacturing capabilities [6] are obviously just bounds for the values selected in a definitive set of design rules, leaving room for a trade-off between design challenges and manufacturing cost. Sometimes relaxing the minimum trace width and spacing from 5/5mil (0.125 mm) to 6/6mil (0.15 mm) can make a noticeable difference in PCB cost. And then again, switching from 0.3 mm to 0.25 mm minimum drill size can make fan-out and routing in tight spaces happen, albeit at a certain price.

Logically we will need to look at the price tag of standard and extended manufacturing capabilities. The following picture displays pricing as of the writing of this article:pcbway_order_spec

For some options the pricing is very attractive. Most notably an array of attractive colours is available at no additional charge. With RoHS and REACH directives in place however it remains to be seen whether lead-free hot air surface levelling (HASL) will become the new standard at no added cost.

Luckily for our project we do not need to stray far from the well-trodden path and just opt for the lead-free finish on a blue 1.6mm PCB.

The ordering process is hassle-free and provides frequent status updates:

pcbway_order_progress

A month after our order, an online gerber viewer [7] was introduced to help designers quickly verify their gerber output before uploading them for the order. It must be noted however that this online feature is at an early stage and is expected to provide layer de-duplication, automatic and consistent color assignment and appropriate z-order and better rendering speed in the future.

pcbway_gerber_viewer

Gerbv [8] is a viable alternative which also provides last-minute editing capabilities (e.g. deleting a stray silkscreen element).

Visual inspection

PCBs were received within one week after ordering, packaged in a vacuum sealed bag and delivered in a cardboard box with foam sheets for shock protection. One extra PCB was also included in the shipment, which is nice to have.

The boards present with cleanly machined edges, well-aligned drill pattern and stop masks on both sides and without scratches or defects. The silkscreen has good coverage and high resolution. Adhesion of stop mask and silkscreen printing are excellent. The lead-free HASL finish is glossy and flat, and while we couldn’t put it to the test with this layout, the TSSOP footprint results suggest no issues with TSSOP, TQFP and BGA components down to 0.5mm pitch.

The board identifier is thankfully hidden underneath an SOIC component in the final product. Pads show the expected probe marks from e-test. without affecting the final reflow result. No probe damage to the pads is evident.

Realising the project

We conclude with some impressions of the assembled PCBs, which we will use in the following articles to build an automated watering system.

Here we see our signature paws with the 2 mm wide capacitor C15 next to them for scale. The pitch of the vertical header is 2.54 mm. Tenting of the vias is also consistent and smooth.

greentropia_base_mask_quality

Good mask alignment and print quality.

The next picture shows successful reflow of components of different size and thermal mass after a lead-free reflow cycle in a convection oven. As the PCBs were properly sealed and fresh, no issues with delamination occured.

greentropia_base_different_size_reflow_result

DC-DC section reflow result.

The reflow result with the lead-free HASL PCB and the stencil ordered along with it is also quite promising. No solder bridges were observed despite lack of mask webbing, which is likely due to our mask relief settings and minimum webbing width. Very thin webbing can be destroyed during HASL, so if the additional safety in the 0.15 to 0.2 mm between the pads is needed it’s worth checking back with the manufacturer.

greentropia_base_tssop_hasl_result

TSSOP reflow result.

While testing the 5V to 12V boost converter, it was found that it worked without issues. Initial testing of the ADC was also promising. As we continue to test the boards over the coming time we’ll find out whether there are zero issues, but so far it appears that everything is working as it should.

Maya

[1] https://mayaposch.wordpress.com/2019/03/06/keeping-plants-happy-with-the-greentropia-base-board-part-1/
[2] https://pcbshopper.com/
[3] https://www.pcbway.com/
[4] https://github.com/MayaPosch/Greentropia_Base
[5] http://www.nyantronics.com/greentropia.php
[6] https://www.pcbway.com/capabilities.html
[7] https://www.pcbway.com/project/OnlineGerberViewer.html
[8] http://gerbv.sourceforge.net/

Keeping plants happy with the Greentropia Base board – Part 1

March 6, 2019 Leave a comment

Last year I got started on an automatic plant watering project, with as goal a completely stand-alone, self-sufficient solution. It should be capable of not only monitoring the level of moisture in the soil, but also control a pump that would add water to the soil when needed.

Later iterations of this basic design added a scale to measure the level in the water reservoir, as well as a multi-colour LED to be used as a system indicator as well as for more decorative purposes. This design was initially developed further for my third book that got released [1][2][3] in February of this year. In chapter 5 of that book it is featured as an example project, using the BMaC [4] firmware for the ESP8266 microcontroller.

That’s where the project remained for a while, as even though a PCB design (the Greentropia [5] base board) had been created that would accommodate the project’s complete functionality on a single board, converting that into a physical product along with the associated effort and costs prevented me from just pushing the button on ordering the PCBs and components.

Thus the board remained just a digital render:

iop_plant_base_002

When I got suddenly contacted by a representative from PCBWay [6] with an offer to have free PCBs made in exchange for a review of the finished board, it made it all too easy to finally take the step to have the board produced for real.

After some last-minute, frantic validation of the design and board layout by yours truly and a good friend, the Gerber files were submitted to PCBWay. We used the Gerber viewer in KiCad to check the files prior to submitting them. Later I learned that PCBWay also offers an online Gerber viewer [7]. We did not use that one, but it’s important to use a Gerber viewer before one submits a design, to be sure that the resulting PCB will look like and function the way it should.

After a couple of days of PCB production and shipping from China to Germany, the boards arrived:

IMG_20190102_161941

Top side:

IMG_20190102_162412

Bottom side:

IMG_20190102_162432

All boards looked pretty good, with pretty sharp silkscreen features and the soldermask being aligned with the pads. We compared them with another Nyantronics PCB that we have been working on for a while now, that one being from JLCPCB. It is a good way to compare the blue soldermask that they use:

IMG_20190102_165819

Which colour you prefer is a personal choice, of course. Personally I like the more deep-blue colour of the JLCPCB board, but the PCBWay blue isn’t half bad either. The real concern is of course whether or not the PCB does what it’s supposed to, which is what we’d find out once we assembled the boards.

For this we used a professional reflow oven, courtesy of the local university:

IMG_0947IMG_0968

This resulted in the following boards, after a few through-hole components being added by hand:

IMG_20190203_041937IMG_20190203_041718IMG_20190203_042545
img_20190305_211945

Each of these boards has sockets for a NodeMCU board, which contains an ESP-12E or 12F module with the ESP8266 microcontroller. This provides the ability to control the pump output and SPI bus, as well as read out the HX711-based scale interface and soil sensor.

Microscope images of the finished boards were also made and can be found in this addendum article: https://mayaposch.wordpress.com/2019/03/11/reviewing-dual-layer-pcbway-pcbs/

In the next parts we will wrap up the remaining development of the hardware, and conclude with the development of the firmware for this board.

Maya

[1] https://www.amazon.com/Hands-Embedded-Programming-versatile-solutions-dp-1788629302/dp/1788629302/
[2] https://www.packtpub.com/application-development/hands-embedded-programming-c17
[3] https://www.amazon.de/Hands-Embedded-Programming-versatile-solutions/dp/1788629302/
[4] https://github.com/MayaPosch/BMaC
[5] http://nyantronics.com/greentropia.php
[6] http://www.pcbway.com/
[7] https://www.pcbway.com/project/OnlineGerberViewer